Please check the examination details below before entering your candidate information

Tuesday 21 May 2019

You must have:

Total Marks
Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name,
centre number and candidate number.
- Answer all questions.
- Without sufficient working, correct answers may be awarded no marks.
- Answer the questions in the spaces provided
- there may be more space than you need.
- Calculators may be used.
- You must NOT write anything on the formulae page.

Anything you write on the formulae page will gain NO credit.

Information

- The total mark for this paper is 100 .
- The marks for each question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.

International GCSE Mathematics

Formulae sheet - Higher Tier

Arithmetic series Sum to n terms, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$	Area of trapezium $=\frac{1}{2}(a+b) h$
The quadratic equation The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$ are given by: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$	
Trigonometry	In any triangle $A B C$ Sine Rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ Cosine Rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$ Area of triangle $=\frac{1}{2} a b \sin C$
Volume of cone $=\frac{1}{3} \pi r^{2} h$ Curved surface area of cone $=\pi r l$	Volume of prism $=$ area of cross section \times length
Volume of cylinder $=\pi r^{2} h$ Curved surface area of cylinder $=2 \pi r h$	Volume of sphere $=\frac{4}{3} \pi r^{3}$ Surface area of sphere $=4 \pi r^{2}$

Answer ALL TWENTY FIVE questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.

1 The diagram shows a cylinder.

Diagram NOT
accurately drawn

The cylinder has radius 8.2 cm and height 10 cm . The cylinder is empty.

Pam pours 1.5 litres of water into the cylinder.
Work out the depth of the water in the cylinder.
Give your answer correct to 1 decimal place.

2 Each interior angle of a regular polygon is 162°
Work out the number of sides the polygon has.
$\mathscr{E}=\{11,12,13,14,15,16,17,18,19,20\}$
$A=\{$ even numbers $\}$
$B=\{$ multiples of 3$\}$
List the members of the set
(i) $A \cap B$
(ii) $A \cup B$
(iii) A^{\prime}

Solve $\quad 4 x-13=17+8 x$

$$
x=
$$

\qquad

5 (a) Write 720 as a product of its prime factors. Show your working clearly.
(b) Find the smallest whole number that 720 can be multiplied by to give a square number.

6 Lorenzo increases all the prices on his restaurant menu by 8%
Before the increase, the price of a dessert was $\$ 4.25$
(a) Work out the price of the dessert after the increase.
\$ \qquad

After the increase, the price of lasagne is $\$ 9.45$
(b) Work out the price of lasagne before the increase.

7 The diagram shows isosceles triangle $A B C$.

$A B=A C=7.5 \mathrm{~cm}$.
The height of the triangle is 6 cm .
Calculate the area of the triangle.

8 There are 10 people in a lift.
These 10 people have a mean weight of 79.2 kg .
3 of these people get out of the lift.
These 3 people have a mean weight of 68 kg .
Work out the mean weight of the 7 people left in the lift.

9
(a) Simplify $t^{9} \div t^{3}$
(b) Simplify $w^{5} \times w^{7}$
(c) Simplify $\left(5 x y^{2}\right)^{3}$

10 Change 22 metres per second to a speed in kilometres per hour. Show your working clearly.
km / h
(Total for Question 10 is $\mathbf{3}$ marks)

113 years ago, the ratio of Tom's age to Clemmie's age was 2:7
Tom is now 15 years old and Clemmie is now x years old.
Find the value of x.

$$
x=.
$$

(Total for Question 11 is $\mathbf{3}$ marks)

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

A box, in the shape of a cuboid, is going to be put on a table.
The whole of one face of the box will be in contact with the table.
The force exerted by the box on the table is always 105 newtons.
The box is 5 m by 4 m by 3 m .
The greatest pressure exerted by the box on the table is P newtons $/ \mathrm{m}^{2}$
The least pressure exerted by the box on the table is Q newtons $/ \mathrm{m}^{2}$
Work out the value of $P-Q$

13 (a) On the Venn diagram, shade the set $(A \cup B)^{\prime} \cap C$

(b) Use set notation to describe the shaded region in the Venn diagram below.

\qquad

14 Each day that Barney goes to college, he either goes by bus or he walks. The probability that Barney will go to college by bus on any day is 0.3
When Barney goes to college by bus, the probability that he will be late is 0.2 When Barney walks to college, the probability that he will be late is 0.1
(a) Complete the probability tree diagram.

Barney will go to college on 200 days next year.
(b) Work out an estimate for the number of days Barney will be late for college next year.

15 The straight line $\mathbf{L}_{\mathbf{1}}$ has equation $2 y=6 x-5$
The straight line $\mathbf{L}_{\mathbf{2}}$ is perpendicular to $\mathbf{L}_{\mathbf{1}}$ and passes through the point (9. -1)
Find an equation for $\mathbf{L}_{\mathbf{2}}$
Give your answer in the form $a y+b x=c$

16 A particle P is moving along a straight line.
The fixed point O lies on this line.
At time t seconds, the displacement, s metres, of P from O is given by

$$
s=4 t^{3}-6 t^{2}+5 t
$$

At time t seconds, the velocity of P is $v \mathrm{~m} / \mathrm{s}$.
(a) Find an expression for v in terms of t.

$$
v=\text {.. }
$$

(b) Find the time at which the acceleration of the particle is $6 \mathrm{~m} / \mathrm{s}^{2}$

17 The histogram shows information about the ages of all the passengers travelling on a plane. No one on the plane is older than 80 years.

24 passengers on the plane are aged between 40 years and 60 years.
(a) Work out the total number of passengers on the plane.

A passenger on the plane is picked at random.
(b) Work out an estimate for the probability that this person is older than 55 years.
(a) Expand and simplify $(x+2)(2 x+3)(x-7)$ Show your working clearly.
(b) Make m the subject of $p^{2}=\frac{x+m}{2 m-y}$

19 The 25th term of an arithmetic series is 44.5 The sum of the first 30 terms of this arithmetic series is 765

Find the 16 th term of the arithmetic series. Show your working clearly.
$20 \quad a=25 \times 10^{14 n}$ where n is an integer.
Find an expression, in terms of n, for $a^{\frac{3}{2}}$
Give your answer in standard form.

21 A curve has equation $y=\mathrm{f}(x)$
There is only one maximum point on the curve.
The coordinates of this maximum point are $(4,3)$
(a) Write down the coordinates of the maximum point on the curve with equation
(i) $y=\mathrm{f}(x-5)$
(ii) $y=3 \mathrm{f}(x)$
\qquad
..)
\qquad
..)

Here is the graph of $y=a \sin (b x)^{\circ}$ for $0 \leqslant x \leqslant 360$

(b) Find the value of a and the value of b.

$$
a=
$$

\qquad

$$
b=
$$

\qquad

22 Solve the simultaneous equations

$$
\begin{aligned}
2 x^{2}+3 y^{2} & =5 \\
y & =2 x+1
\end{aligned}
$$

Show clear algebraic working.

Diagram NOT
accurately drawn
B, C, D and F are points on a circle.
$A B C, A F D, B F E$ and $C D E$ are straight lines.
Work out the size of angle x.
Show your working clearly.

$$
x=
$$

\qquad .${ }^{\circ}$

Diagram NOT accurately drawn

$$
\overrightarrow{O A}=\mathbf{a} \quad \overrightarrow{O C}=\mathbf{c} \quad \overrightarrow{A B}=2 \mathbf{c}
$$

P is the point on $A B$ such that $A P: P B=3: 1$
Q is the point on $A C$ such that $O Q P$ is a straight line.
Use a vector method to find $A Q: Q C$
Show your working clearly.
\qquad

25 A boat sails from point X to point Y and then to point Z.
Y is on a bearing of 280° from X.
Z is on a bearing of 220° from Y.
The distance from X to Y is 3.5 km .
The distance from Y to Z is 6 km .
Work out the bearing of Z from X.
Give your answer correct to 1 decimal place.

